2y^2+y^2=18

Simple and best practice solution for 2y^2+y^2=18 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 2y^2+y^2=18 equation:



2y^2+y^2=18
We move all terms to the left:
2y^2+y^2-(18)=0
We add all the numbers together, and all the variables
3y^2-18=0
a = 3; b = 0; c = -18;
Δ = b2-4ac
Δ = 02-4·3·(-18)
Δ = 216
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{216}=\sqrt{36*6}=\sqrt{36}*\sqrt{6}=6\sqrt{6}$
$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-6\sqrt{6}}{2*3}=\frac{0-6\sqrt{6}}{6} =-\frac{6\sqrt{6}}{6} =-\sqrt{6} $
$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+6\sqrt{6}}{2*3}=\frac{0+6\sqrt{6}}{6} =\frac{6\sqrt{6}}{6} =\sqrt{6} $

See similar equations:

| 5+14-8x=32 | | 5(v+1)=-3(2v+1)+3v | | d-2÷2=3 | | 3(2x-1)=2(3x)-3 | | 39=3m-13 | | 19=-9m+7 | | 4x+6=124 | | 11x+5+10x+70=180 | | 3(u-1)-1=-3(-6u+2)-u | | 7x-12=3x+1 | | 2.9=-2d+4.1;0.5,0.6,0.7 | | x^2+5x+38=4-3x | | 21x-2+15x-1+35=180 | | 5/n-9=2 | | 3(u-1)-1=3(-6u+2)-u | | -10+2n=-4 | | 4(1+6v)=-34+5v | | 6x+18x-5=6(4x=2) | | -c/7+8=3;14,35,49 | | 10x=4+8x | | (6x-8)/(2x=10)=2/3 | | -2(v-7)=-5v-7 | | 43+29=x+3493 | | k8=17 | | 2(2x-3)=6x-4 | | 75+(4x-9)=90 | | 3x÷4-1=5 | | 3+2r-8=-8r+2+7r | | 3(k+4)+5k=28 | | 17=k8 | | -=4(2b+2)-3 | | 9/2-5/4m=-9/4m+1 |

Equations solver categories